
Single Processor Optimizations
Matrix Multiplication Case StudyMatrix Multiplication Case Study

Horst D. Simon
hdsimon@eecs berkeley eduhdsimon@eecs.berkeley.edu

www.cs.berkeley.edu/~kamil/cs267

CS267 Lecture 3 1

Much Ado about Dwarves Motifs

High-end simulation in the physical
sciences = 7 numerical methods:

1 Structured Grids (including locally1. Structured Grids (including locally
structured grids, e.g. Adaptive
Mesh Refinement)

2. Unstructured Grids • Dense linear algebra arises in 2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra

some of the largest
computations

• It achieves high machine
ffi ip g

6. Particles
7. Map - Reduce

efficiency
• There are important

subcategories as we will see

01/30/2008 CS267 - Lecture 3 2

See “The View from Berkeley” report

Dwarf Popularity (Red Hot → Blue CoolBlue Cool)

Embed SPEC DB Games ML HPC
1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 G hi l M d l12 Graphical Models
13 Unstructured Grid

• Claim: parallel architecture, language, compiler … must do at least these well to
run future parallel apps well

01/30/2008 CS267 - Lecture 3 3

run future parallel apps well
• Note: MapReduce is embarrassingly parallel; FSM embarrassingly sequential?

Outline

• Recap from Lecture 2
• Memory hierarchy is important to performance

U f i l f d l t d t d• Use of simple performance models to understand
performance

• Case Study: Matrix Multiplication
• Blocking algorithms
• Other tuning techniques
• Alternate algorithms

• Automatic Performance Tuning

01/30/2008 CS267 - Lecture 3 4

Memory Hierarchy
• Most programs have a high degree of locality in their accesses

• spatial locality: accessing things nearby previous accesses
• temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality

t l

processor

on-chipi t
datapath

control
Second

level
cache

(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)
on chip
cacheregisters

Speed 1ns 10ns 100ns 10ms 10sec

Size B KB MB GB TB

01/30/2008 CS267 - Lecture 3 5

Using a Simple Model of Memory to Optimize
2 f• Assume just 2 levels in the hierarchy, fast and slow

• All data initially in slow memory
• m = number of memory elements (words) moved between fast and

Computational
Intensity: Key to
algorithm efficiency

m number of memory elements (words) moved between fast and
slow memory

• tm = time per slow memory operation
• f = number of arithmetic operations algorithm efficiencyf number of arithmetic operations
• tf = time per arithmetic operation << tm

• q = f / m average number of flops per slow memory access
Mi i ibl ti f* t h ll d t i f t

Machine
B l

• Minimum possible time = f* tf when all data in fast memory
• Actual time

• f * tf + m * tm = f * tf * (1 + tm/tf * 1/q) Balance:
Key to
machine
efficiency

f m f (m f q)

• Larger q means time closer to minimum f * tf
q ≥ t /t needed to get at least half of peak speed

01/30/2008 CS267 - Lecture 3 6

y• q ≥ tm/tf needed to get at least half of peak speed

Warm up: Matrix-vector multiplication
{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n

{read row i of A into fast memory}
for j = 1:n

y(i) = y(i) + A(i,j)*x(j)y(i) y(i) A(i,j) x(j)
{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f = number of arithmetic operations = 2n2

• q = f / m ~= 2• q = f / m ~= 2

• Matrix-vector multiplication limited by slow memory speed

01/30/2008 CS267 - Lecture 3 7

Modeling Matrix-Vector Multiplication

• Compute time for nxn = 1000x1000 matrix
• Time

• f * t + m * t = f * t * (1 + t /t * 1/q)• f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)
• = 2*n2 * tf * (1 + tm/tf * 1/2)

• For tf and tm, using data from R. Vuduc’s PhD (pp 351-3)
• http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf
• For tm use minimum-memory-latency / words-per-cache-line

Clock Peak Linesize t m/t fMem Lat (Min,Max)Clock Peak Linesize t_m/t_f
MHz Mflop/s Bytes

Ultra 2i 333 667 38 66 16 24.8
Ultra 3 900 1800 28 200 32 14.0
Pentium 3 500 500 25 60 32 6 3

Mem Lat (Min,Max)
cycles machine

balance
(q must
b t l tPentium 3 500 500 25 60 32 6.3

Pentium3M 800 800 40 60 32 10.0
Power3 375 1500 35 139 128 8.8
Power4 1300 5200 60 10000 128 15.0
Itanium1 800 3200 36 85 32 36 0

be at least
this for
½ peak
speed)

01/30/2008 CS267 - Lecture 3 8

Itanium1 800 3200 36 85 32 36.0
Itanium2 900 3600 11 60 64 5.5

Outline

• Recap from Lecture 2
• Memory hierarchy is important to performance

U f i l f d l t d t d• Use of simple performance models to understand
performance

• Case Study: Matrix Multiplication
• Blocking algorithms
• Other tuning techniques
• Alternate algorithms

• Automatic Performance Tuning

01/30/2008 CS267 - Lecture 3 9

Naïve Matrix Multiply
{implements C = C + A*B}
for i = 1 to n

for j = 1 to n
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

Algorithm has 2*n3 = O(n3) Flops and
operates on 3*n2 words of memory

q potentially as large as 2*n3 / 3*n2 = O(n)

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

01/30/2008 CS267 - Lecture 3 10

Naïve Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
{read row i of A into fast memory}{ y}
for j = 1 to n

{read C(i,j) into fast memory}
{read column j of B into fast memory}{read column j of B into fast memory}
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{ it C(i j) b k t l }{write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

01/30/2008 CS267 - Lecture 3 11

Naïve Matrix Multiply
Number of slow memory references on unblocked matrix multiply

m = n3 to read each column of B n times
+ n2 to read each row of A once
+ 2n2 to read and write each element of C once
= n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2)So q / / (3)
~= 2 for large n, no improvement over matrix-vector multiply

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

01/30/2008 CS267 - Lecture 3 12

Matrix-multiply, optimized several ways

01/30/2008 CS267 - Lecture 3 13

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Naïve Matrix Multiply on RS/6000

6 T = N4.7

12000 would take
1095 years

3

4

5
s/

fl
op

T N

1

2
3

lo
g

cy
cl
es

Size 2000 took 5 days

-1

0
0 1 2 3 4 5

l

log Problem Size

O(N3) performance would have constant cycles/flop

01/30/2008 CS267 - Lecture 3 14

Performance looks like O(N4.7)
Slide source: Larry Carter, UCSD

Naïve Matrix Multiply on RS/6000

6
Page miss every iteration

3

4

5

es
/f

lo
p

TLB miss every
iteration

1

2

3

lo
g

cy
cl
e

Cache miss every
16 iterations Page miss every 512 iterations

0
0 1 2 3 4 5

log Problem Size

01/30/2008 CS267 - Lecture 3 15Slide source: Larry Carter, UCSD

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be n-by-n matrix viewed as N-by-N matrices of b-by-b
subblocks where b=n / N is called the block size

for i = 1 to Nfor i 1 to N
for j = 1 to N

{read block C(i,j) into fast memory}
for k = 1 to Nfor k = 1 to N

{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i j) C(i j) A(i k) * B(k j) {d t i lti l bl k }C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

01/30/2008 CS267 - Lecture 3 16

Blocked (Tiled) Matrix Multiply
Recall:

m is amount memory traffic between slow and fast memory
matrix has nxn elements, and NxN blocks each of size bxb
f is number of floating point operations, 2n3 for this problem
q = f / m is our measure of algorithm efficiency in the memory system

So:So:
m = N*n2 read each block of B N3 times (N3 * b2 = N3 * (n/N)2 = N*n2)

+ N*n2 read each block of A N3 times
+ 2n2 read and write each block of C once+ 2n2 read and write each block of C once
= (2N + 2) * n2

S t ti l i t it f / 2 3 / ((2N 2) * 2)So computational intensity q = f / m = 2n3 / ((2N + 2) * n2)
~= n / N = b for large n

So we can improve performance by increasing the blocksize b

01/30/2008 CS267 - Lecture 3 17

Can be much faster than matrix-vector multiply (q=2)

Using Analysis to Understand Machines
The blocked algorithm has computational intensity q ~= b
• The larger the block size, the more efficient our algorithm will be
• Limit: All three blocks from A,B,C must fit in fast memory (cache), so y ()

we cannot make these blocks arbitrarily large
• Assume your fast memory has size Mfast

3b2 <= Mfast, so q ~= b <= sqrt(Mfast/3)3b Mfast, so q b sqrt(Mfast/3)

required
t_m/t_f KB

• To build a machine to run matrix
multiply at 1/2 peak arithmetic speed
f th hi d f t Ultra 2i 24.8 14.8

Ultra 3 14 4.7
Pentium 3 6.25 0.9
Pentium3M 10 2.4

of the machine, we need a fast
memory of size

Mfast >= 3b2 ~= 3q2 = 3(tm/tf)2

Power3 8.75 1.8
Power4 15 5.4
Itanium1 36 31.1
Itanium2 5 5 0 7

• This size is reasonable for L1 cache,
but not for register sets

• Note: analysis assumes it is possible

01/30/2008 CS267 - Lecture 3 18

Itanium2 5.5 0.7to schedule the instructions perfectly

Limits to Optimizing Matrix Multiply
• The blocked algorithm changes the order in which values are

accumulated into each C[i,j] by applying associativity
• Get slightly different answers from naïve code, because of roundoff - OK

• The previous analysis showed that the blocked algorithm has
computational intensity:

q ~= b <= sqrt(Mfast/3)

• There is a lower bound result that says we cannot do any better than
this (using only associativity)(g y y)

• Theorem (Hong & Kung, 1981): Any reorganization of this algorithm
(that uses only associativity) is limited to q = O(sqrt(Mf t))(that uses only associativity) is limited to q O(sqrt(Mfast))

• What if more levels of memory hierarchy?
Appl blocking rec rsi el once per le el

01/30/2008 CS267 - Lecture 3 19

• Apply blocking recursively, once per level

Recursion: Cache Oblivious Algorithms
• The tiled algorithm requires finding a good block size
• Cache Oblivious Algorithms offer an alternative

• Treat nxn matrix multiply set of smaller problems• Treat nxn matrix multiply set of smaller problems
• Eventually, these will fit in cache

• Cases for A (nxm) * B (mxp)
• Case1: m>= max{n,p}: split A horizontally:
• Case 2 : n>= max{m,p}: split A vertically and B horizontally
• Case 3: p>= max{m,n}: split B vertically

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
BA
BA

B
A
A 11 () ()BABA

B
B

AA 21
1

21, +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝ BAA 22

() ()BABABBA =

B2 ⎠⎝
Case 1 Case 2

01/30/2008 CS267 - Lecture 3 20

() ()2121 ,, BABABBA =
Case 3

Experience

• In practice, need to cut off recursion
I l ti hi h f C h Obli i d i• Implementing a high-performance Cache-Oblivious code is
not easy
• Careful attention to micro-kernel and mini-kernel is needed

• Using fully recursive approach with highly optimized
recursive micro-kernel, Pingali et al report that they never
got more than 2/3 of peak.g p

• Issues with Cache Oblivious (recursive) approach
• Recursive Micro-Kernels yield less performance than iterative ones

using same scheduling techniquesusing same scheduling techniques
• Pre-fetching is needed to compete with best code: not well-

understood in the context of CO codes

01/30/2008 CS267 - Lecture 3

Unpublished work, presented at LACSI 2006

Recursive Data Layouts
• Blocking seems to require knowing cache sizes – portable?
• A related idea is to use a recursive structure for the matrix
• There are several possible recursive decompositions depending on

the order of the sub-blocks
• This figure shows Z-Morton Ordering (“space filling curve”)
• See papers on “cache oblivious algorithms” and “recursive layouts”p p g y
• Will be in next LAPACK release (Gustavson, Kagstrom, et al, SIAM

Review, 2004)

Advantages:
• the recursive layout works well

for any cache size
Disadvantages:
• The index calculations to find

A[i,j] are expensive
I l t ti it h t

01/30/2008 CS267 - Lecture 3 22

• Implementations switch to
column-major for small sizes

Strassen’s Matrix Multiply

• The traditional algorithm (with or without tiling) has O(n^3) flops
• Strassen discovered an algorithm with asymptotically lower flops

O(^2 81)• O(n^2.81)
• Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds

• Strassen does it with 7 multiplies and 18 adds

Let M = m11 m12 = a11 a12 b11 b12

m21 m22 = a21 a22 b21 b22

Let p1 = (a12 a22) * (b21 + b22) p5 = a11 * (b12 b22)Let p1 = (a12 - a22) (b21 + b22) p5 = a11 (b12 - b22)

p2 = (a11 + a22) * (b11 + b22) p6 = a22 * (b21 - b11)

p3 = (a11 - a21) * (b11 + b12) p7 = (a21 + a22) * b11

p4 = (a11 + a12) * b22p4 = (a11 + a12) b22

Then m11 = p1 + p2 - p4 + p6

m12 = p4 + p5

m21 = p6 + p7

Extends to nxn by divide&conquer

01/30/2008 CS267 - Lecture 3 23

m21 p6 + p7

m22 = p2 - p3 + p5 - p7

Strassen (continued)
T(n) = Cost of multiplying nxn matrices
 = 7*T(n/2) + 18*(n/2)2

= O(n log2 7) = O(n log2 7)
 = O(n 2.81)

• Asymptotically faster
• Several times faster for large n in practice
• Cross-over depends on machine

A il bl i l lib i• Available in several libraries
• “Tuning Strassen's Matrix Multiplication for Memory Efficiency”,

M. S. Thottethodi, S. Chatterjee, and A. Lebeck, in Proceedings
of Supercomputing '98of Supercomputing 98

• Caveats
• Needs more memory than standard algorithm
• Can be less accurate because of roundoff error

01/30/2008 CS267 - Lecture 3 24

Can be less accurate because of roundoff error

Other Fast Matrix Multiplication Algorithms

• Current world’s record is O(n 2.376...)
(Coppersmith & Winograd)
Why does Hong/Kung theorem not apply?• Why does Hong/Kung theorem not apply?

• Possibility of O(n2+ε) algorithm! (Cohn, Umans,
Kleinberg 2003)Kleinberg, 2003)

• Fast methods (besides Strassen) may need
unrealistically large ny g

01/30/2008 CS267 - Lecture 3 25

Short Break

Questions about course?Questions about course?
Homework 1 coming soon (Friday)

CS267 Lecture 3 26

Outline

• Recap from Lecture 2
• Memory hierarchy is important to performance

U f i l f d l t d t d• Use of simple performance models to understand
performance

• Case Study: Matrix Multiplication
• Blocking algorithms
• Other tuning techniques
• Alternate algorithms

• Automatic Performance Tuning

01/30/2008 CS267 - Lecture 3 27

Search Over Block Sizes
• Performance models are useful for high level algorithms

• Helps in developing a blocked algorithm
• Models have not proven very useful for block size selectionp y

• too complicated to be useful
– See work by Sid Chatterjee for detailed model

• too simple to be accuratep
– Multiple multidimensional arrays, virtual memory, etc.

• Speed depends on matrix dimensions, details of code, compiler,
processor

• Some systems use search over “design space” of
possible implementations

• Atlas – incorporated into Matlab• Atlas – incorporated into Matlab
• BeBOP – http://bebop.cs.berkeley.edu/

01/30/2008 CS267 - Lecture 3 28

What the Search Space Looks Like

A 2-D slice of a 3-D register-tile search space The dark blue region was pruned
Number of rows in register block

01/30/2008 CS267 - Lecture 3 29

A 2 D slice of a 3 D register tile search space. The dark blue region was pruned.
(Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)

Tiling Alone Might Not Be Enough
• Naïve and a “naïvely tiled” code on Itanium 2Naïve and a naïvely tiled code on Itanium 2

• Searched all block sizes to find best, b=56
• Starting point for next homework

1200

1400

1600

800

1000

1200

Fl
op

/s

200

400

600M

3 loops
blocked, b=56

0
0 200 400 600 800

Matrix dimension

01/30/2008 CS267 - Lecture 3 30

Matrix dimension

Optimizing in Practice
• Tiling for registers

• loop unrolling, use of named “register” variables
• Tiling for multiple levels of cache and TLBTiling for multiple levels of cache and TLB
• Exploiting fine-grained parallelism in processor

• superscalar; pipelining
• Complicated compiler interactions
• Hard to do by hand (but you’ll try)
• Automatic optimization an active research area• Automatic optimization an active research area

• BeBOP: bebop.cs.berkeley.edu/
• PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac

in particular tr-98-035.ps.gz
• ATLAS: www.netlib.org/atlas

01/30/2008 CS267 - Lecture 3 31

Removing False Dependencies
• Using local variables, reorder operations to remove false

dependencies
[i] b[i] + f l d ft it h da[i] = b[i] + c;
a[i+1] = b[i+1] * d;

false read-after-write hazard
between a[i] and b[i+1]

float f1 = b[i];
fl t f2 b[i+1]float f2 = b[i+1];

a[i] = f1 + c;
a[i+1] = f2 * d;

With some compilers, you can declare a and b unaliased.
• Done via “restrict pointers,” compiler flag, or pragma

01/30/2008 CS267 - Lecture 3 32

Exploit Multiple Registers
• Reduce demands on memory bandwidth by pre-loading

into local variables
while() {while(…) {

*res++ = filter[0]*signal[0]
+ filter[1]*signal[1]
+ filter[2]*signal[2];

signal++;
}

float f0 = filter[0];
float f1 = filter[1];
float f2 = filter[2];
while() {

also: register float f0 = …;

while(…) {
*res++ = f0*signal[0]

+ f1*signal[1]
+ f2*signal[2];

Example is a convolution

01/30/2008 CS267 - Lecture 3 33

signal++;
}

Minimize Pointer Updates
• Replace pointer updates for strided memory addressing

with constant array offsets
f0 * 8 8 + 4f0 = *r8; r8 += 4;
f1 = *r8; r8 += 4;
f2 = *r8; r8 += 4;

f0 = r8[0];
f1 8[4]f1 = r8[4];
f2 = r8[8];
r8 += 12;

Pointer vs. array expression costs may differ.
• Some compilers do a better job at analyzing one than the other

01/30/2008 CS267 - Lecture 3 34

Loop Unrolling
• Expose instruction-level parallelism

float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {

signal += 3;signal + 3;
s0 = signal[0];
res[0] = f0*s1 + f1*s2 + f2*s0;

1 i l[1]s1 = signal[1];
res[1] = f0*s2 + f1*s0 + f2*s1;

s2 = signal[2];g []
res[2] = f0*s0 + f1*s1 + f2*s2;

res += 3;
} while();

01/30/2008 CS267 - Lecture 3 35

} while(…);

Expose Independent Operations
• Hide instruction latency

• Use local variables to expose independent operations that can
execute in parallel or in a pipelined fashion

• Balance the instruction mix (what functional units are
available?)

f1 = f5 * f9;;
f2 = f6 + f10;
f3 = f7 * f11;
f4 = f8 + f12;

01/30/2008 CS267 - Lecture 3 36

Copy optimization
• Copy input operands or blocks

• Reduce cache conflicts
• Constant array offsets for fixed size blocksy
• Expose page-level locality

0 4 8 12

Original matrix
(numbers are addresses)

0 2 8 10

Reorganized into
2x2 blocks

0

1

2

4

5

6

8

9

10

12

13

14

0

1

4

2

3

6

8

9

12

10

11

13

3 7 11 15 5 7 14 15

01/30/2008 CS267 - Lecture 3 37

ATLAS Matrix Multiply (DGEMM n = 500)

Source: Jack Dongarra

700.0

800.0

900.0
Vendor BLAS
ATLAS BLAS
F77 BLAS

Source: Jack Dongarra

400.0

500.0

600.0

M
FL

O
PS

100.0

200.0

300.0

0.0

MD A
th

lon-6
00

DEC ev
56

-53
3

DEC ev
6-5

00
P90

00
/73

5/1
35

M
PPC60

4-1
12

M
Power2

-16
0

M
Power3

-20
0

nti
um Pro

-20
0

Pen
tiu

m II-
26

6
Pen

tiu
m III

-55
0

10
00

0ip
28

-20
0

12
00

0ip
30

-27
0

tra
Sparc

2-2
00

• ATLAS is faster than all other portable BLAS implementations and it is

AMD DE D

HP9

IB
M P

IB
M

IB
M

Pen
t Pe Pe

SGI R
10

SGI R
12

Sun
 U

ltr
a

Architectures

01/30/2008 CS267 - Lecture 3 38

comparable with machine-specific libraries provided by the vendor.

Experiments on Search vs. Modeling

Alpha 21264St d h (Atl t

Power 4

Power 3

Alpha 21264

Refined Model

Model

Study compares search (Atlas to
optimization selection based on
performance models)

UltraSparc IIIi

R12K

Power 4

Unleashed

Refined Model

•Ten modern architectures
• Model did well on most cases

• Better on UltraSparc

Opteron 240

Itanium2
• Worse on Itanium

• Eliminating performance gaps:
think globally, search locally

ll f

Pentium III

Athlon MP
-small performance gaps:

local search
-large performance gaps:
refine model

0% 50% ATLAS 150% 200%

Pentium 4
refine model

• Substantial gap between
ATLAS CGw/S and ATLAS
Unleashed on some machines

01/30/2008 CS267 - Lecture 3 39

0% 50% ATLAS

CGw�S

100%

150% 200%Unleashed on some machines

Source: K. Pingali. Results from IEEE ’05 paper by K Yotov, X Li, G Ren, M Garzarán, D Padua, K
Pingali, P Stodghill.

Locality in Other Algorithms
• The performance of any algorithm is limited by q

• q = # flops / # memory refs = “Computational Intensity”
• In matrix multiply we increase q by changingIn matrix multiply, we increase q by changing

computation order
• Reuse data in cache (increased temporal locality)

• For other algorithms and data structures, tuning still an
open problemp p

• sparse matrices (blocking, reordering, splitting)
• Weekly research meetings
• Bebop.cs.berkeley.edup y
• OSKI – tuning sequential sparse-matrix-vector multiply and

related operations
• trees (B-Trees are for the disk level of the hierarchy)

01/30/2008 CS267 - Lecture 3 40

• linked lists (some work done here)

Dense Linear Algebra is not All Matrix Multiply
Main dense matrix kernels are in an industry standard interface called• Main dense matrix kernels are in an industry standard interface called
the BLAS: Basic Linear Algebra Subroutines

• www.netlib.org/blas, www.netlib.org/blas/blast--forum
• Vendors others supply optimized implementations• Vendors, others supply optimized implementations

• History
• BLAS1 (1970s):

• vector operations: dot product saxpy (y=α*x+y) etc• vector operations: dot product, saxpy (y=α*x+y), etc
• m=2*n, f=2*n, q ~1 or less

• BLAS2 (mid 1980s)
• matrix-vector operations: matrix vector multiply, etcp p y,
• m=n^2, f=2*n^2, q~2, less overhead
• somewhat faster than BLAS1

• BLAS3 (late 1980s)
• matrix-matrix operations: matrix matrix multiply, etc
• m <= 3n^2, f=O(n^3), so q=f/m can possibly be as large as n, so BLAS3 is

potentially much faster than BLAS2
• Good algorithms used BLAS3 when possible (LAPACK & ScaLAPACK)

01/30/2008 CS267 - Lecture 3 41

Good algorithms used BLAS3 when possible (LAPACK & ScaLAPACK)
• See www.netlib.org/{lapack,scalapack}
• Not all algorithms *can* use BLAS3

BLAS speeds on an IBM RS6000/590
Peak speed = 266 Mflops

P k
BLAS 3
Peak

BLAS 2BLAS 2
BLAS 1

BLAS 3 (n-by-n matrix matrix multiply) vs
BLAS 2 (n by n matrix vector multiply) vs

01/30/2008 CS267 - Lecture 3 42

BLAS 2 (n-by-n matrix vector multiply) vs
BLAS 1 (saxpy of n vectors)

Dense Linear Algebra: BLAS2 vs. BLAS3
• BLAS2 and BLAS3 have very different computational

intensity, and therefore different performance
BLAS3 (M t i M t i) BLAS2 (M t i V t)BLAS3 (MatrixMatrix) vs. BLAS2 (MatrixVector)

900
1000

500
600
700
800

Fl
op

/s

DGEMM
DGEMV

0
100
200
300
400M

F DGEMV

0

D
Athl

on
-60

0
EC ev

56
-53

3
DEC ev

6-5
00

00
0/7

35
/13

5
PPC60

4-1
12

Pow
er2

-16
0

Pow
er3

-20
0

tiu
m P

ro-
20

0
en

tiu
m II-

26
6

nti
um

 III
-55

0
00

0ip
28

-20
0

00
0ip

30
-27

0

01/30/2008 CS267 - Lecture 3 43

AMD A
DEC DE

HP90
0

IB
M P

P
IB

M P
IB

M P
Pen

tiu Pen

Pen
t

SGI R
10

00
SGI R

12
00

Data source: Jack Dongarra

Other Automatic Tuning Efforts

• FFTW (MIT): “Fastest Fourier Transform in the West”
• Sequential (and parallel)
• Many variants (real/complex, sine/cosine, multidimensional)y (p)
• 1999 Wilkinson Prize
• www.fftw.org

• Spiral (CMU)p ()
• Digital signal processing transforms
• FFT and beyond
• www.spiral.net

• BEBOP (UCB)
• http://bebop.cs.berkeley.edu
• OSKI - Sparse matrix kernels
• Stencils – Structure grid kernels (with LBNL)

• Interprocessor communication kernels
• Bebop (UPC), Dongarra (UTK for MPI)

01/30/2008 CS267 - Lecture 3 44

• Class projects available

Summary
• Performance programming on uniprocessors requires

• understanding of memory system
• understanding of fine-grained parallelism in processor

• Simple performance models can aid in understanding
• Two ratios are key to efficiency (relative to peak)

1 t ti l i t it f th l ith1.computational intensity of the algorithm:
• q = f/m = # floating point operations / # slow memory references

2.machine balance in the memory system:
• tm/tf = time for slow memory reference / time for floating point operation

• Blocking (tiling) is a basic approach to increase q
• Techniques apply generally, but the details (e.g., block size) are

architecture dependent
• Similar techniques are possible on other data structures and algorithms

• Now it’s your turn: Homework 1

01/30/2008 CS267 - Lecture 3 45

• Work in teams of 2 or 3 (assigned this time)

Reading for Today
“P ll l C ti S b k” Ch t 2 & 3• “Parallel Computing Sourcebook” Chapters 2 & 3

• "Performance Optimization of Numerically Intensive Codes", by
Stefan Goedecker and Adolfy Hoisie, SIAM 2001.

• Web pages for reference:• Web pages for reference:
• BeBOP Homepage
• ATLAS Homepage
• BLAS (Basic Linear Algebra Subroutines), Reference for (unoptimized)BLAS (Basic Linear Algebra Subroutines), Reference for (unoptimized)

implementations of the BLAS, with documentation.
• LAPACK (Linear Algebra PACKage), a standard linear algebra library

optimized to use the BLAS effectively on uniprocessors and shared
memory machines (software documentation and reports)memory machines (software, documentation and reports)

• ScaLAPACK (Scalable LAPACK), a parallel version of LAPACK for
distributed memory machines (software, documentation and reports)

• Tuning Strassen's Matrix Multiplication for Memory Efficiency
Mithuna S. Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck
in Proceedings of Supercomputing '98, November 1998 postscript

• Recursive Array Layouts and Fast Parallel Matrix Multiplication” by
Chatterjee et al. IEEE TPDS November 2002.

01/30/2008 CS267 - Lecture 3 46

Chatterjee et al. IEEE TPDS November 2002.

Questions You Should Be Able to Answer
1. What is the key to understand algorithm efficiency in

our simple memory model?
2 What is the key to understand machine efficiency in2. What is the key to understand machine efficiency in

our simple memory model?
3. What is tiling?
4. Why does block matrix multiply reduce the number of

memory references?
5 What are the BLAS?5. What are the BLAS?
6. Why does loop unrolling improve uniprocessor

performance?

01/30/2008 CS267 - Lecture 3 47

